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Abstract 

This paper shows maps of the web presence of the European Higher Education 

Area (EHEA) on the level of universities using hyperlinks and analyses the topology of 

the European academic network. Its purpose is to combine methods from Social 

Network Analysis (SNA) and cybermetric techniques in order to ask for tendencies of 

integration of the European universities visible in their web presence and the role of 

different universities in the process of the emergence of an European Research Area. 

We find as a main result that the European network is set up by the aggregation of well-

defined national networks, whereby the German and British networks are dominant. The 

national networks are connected to each other through outstanding national universities 

in each country.     

 
Introduction 

Visualization of Information (VI) (TUFTE, 1997; CHEN, 2003) is a technique 

that it aims to show conceptual entities and their relationships through visual metaphors 

that allows us to interpret and extract conclusions about a certain complex phenomena. 

Inside of VI, Maps of Science (SMALL, 2003; SMALL & GRIFFITH, 1974; WHITE 
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& GRIFFITH, 1981; McCAIN, 1990) are a model of the utility that show(s) the 

scientific relationships among authors or academic institutions through the citations, co-

authorship, or co-word analysis. Although NOYONS (1999) defines Maps of Science as 

“landscapes of scientific research fields created by quantitative analysis of bibliographic 

data”, recently web data have been used as additional source of information on scientific 

networks. LARSON (1996) was the first to map the out- and in-link relationships of 

several Earth Science web pages using co-link analysis and displaying in a 

Multidimensional Scaling (MDS) graph. POLANCO et al. (2001) also mapped and 

clustered 791 European universities web sites using co-link analysis. HEIMERIKS, 

HORLESBERGER, and VAN DEN BESSELAAR (2003) and HEIMERIKS (2005) 

more recently mapped 220 EU universities at the level of departments, universities and 

countries find cultural and linguistic pattern in their relationships. VAUGHAN and 

YOU (2005) and VAUGHAN (2006) introduced co-link maps as a technique to study 

the business relationship between companies and to know the presence of companies in 

concrete markets.  

The World Wide Web is a complex network that connects web pages and sites 

through hypertextual links creating a large and dense network of nodes 

(SCHARNHORST, 2003). Network Analysis is both a suitable way to present 

graphically the link relationship in the web and a technique to analyze and understand 

the web structure and topology. Recently, the web has been analyzed as a complex 

network from point of view of statistical physics (BARABASI, ALBERT & JEONG, 

2000; ALBERT JEONG, & BARABASI, 1999; BRODER et al., 2000). ALBERT, 

JEONG and BARABASI (1999) estimated the diameter of the Web, i.e. number of links 

to cover whole web, to be 19 nodes. These same authors (BARABASI et al., 2000) 

discovered that the Web showed scale-free networks properties because just a few nodes 
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attract a huge amount of links and the remaining majority only attracts a few of them. 

Meanwhile, the analysis of web graphs in terms of scale-free or small world networks 

has been incorporated into information science (BJÖRNEBORN, 2001, 2003; KATZ & 

COTHEY, 2006; THELWALL & WILKINSON, 2003). Web graphs based on 

hyperlinks are only one example of such studies. Different authors have developed 

thematic maps about several web objects (DODGE, 2004) with the intention of making 

the distribution of users, flow, servers, etc., along the world or in a certain visible 

region. In 1992 PATERSON and COX (1992) mapped the exponential growing of the 

internet traffic in the US detecting the main edges of information activity. In 1993 Brian 

Reid (DODGE & KITCHIN, 2001) mapped the flow of USENET network, and YOOK, 

JEONG and BARABASI (2001) made a map about the distribution of population 

against the number of routers connected to Internet 

 

Objectives 

In this paper we present first attempts to map the web presence of the European 

Higher Education Area (EHEA) on the level of countries and universities. The aim is to 

get insights how structured the European academic space in the web is. In particular, we 

ask which agglomerative aggregation of universities across European countries can be 

seen on the web. Do we get a random network? Which role plays geographic 

neighborhood? Or will we observe a superposition of national networks? We want to 

see the relationships among the universities in and between European countries in term 

of their hyperlink structures (including link as well as co-link structures). Through 

applying tools from Network Analysis to cybermetric data we intent to identify the main 

agents (universities or countries) and their role inside of the European academic web 

environment. 
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Methods 

535 universities of the 14 European countries (EU except Luxembourg) in 2004 

were selected from Webometrics Ranking of World Universities 

(www.webometrics.org). This site ranks 3,000 universities according two main criteria: 

size (number of pages and rich files) and visibility (number of incoming links). This set 

of European universities were mapped according to the link relationships among them. 

Two different set of web data were used: search engine data and crawler data. The 

search engine was used to retrieve the link relationships between web sites and the 

crawler was used to extract the pages hosted in each web site. The combination of these 

different tools allows us to obtain suitable data in a fast and exhaustively way. For 

instance, the link extraction is a complex task to done with a crawler, whereas a search 

engine provide this information more easily. In any case, we think that in macro level 

studies a possible heterogeneity of the data might become less important, because 

fluctuations in the data (due to temporarily instability) and errors in the measurement 

will be leveled out on a high level of aggregation and are less important if the size of the 

system under study increases. The search engine data were obtained from Yahoo! 

Search with the query: 

+site:{university domainA} +linkdomain:{university domainB} 

On the other hand, the crawler data were extracted with the software Blinker 

(COTHEY, 2004; COTHEY, 2005) to find the number of pages and domains of the 535 

universities. Both set of data were obtained in August of 2005. These data were 

analyzed with the software Ucinet 6.109 and the application NetDraw 2.28 was used to 

built the network graphs.  
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The resulting graphs were processed in two different ways. A graph  was built 

through the link matrix retrieved from the search engine to illustrate the topology of the 

network and its connectivity degree. This graph was laid out with the Spring embedding 

algorithm through NetDraw (KAMADA & KAWAI, 1989). This layout shows the 

nodes and the arcs minimizing the cross points and the overlap of nodes to obtain an 

excellent network visualization and thus to detect the main characteristics of the 

network. Nevertheless, it is more appropriate to small and medium size networks 

because it is quite slow when it comes to configure the network (NOOY, MRVAR & 

BATAGELJ, 2005). Finally, multiple arcs with fewer than 50 links were removed to 

reveal a clearer graph of a network of 527 nodes.  

On the other hand, a co-link map (LEYDESDORFF & VAUGHAN, 2006) was 

constructed to detect the link pattern among the universities web sites and how these are 

grouped according to the co-link degree. The co-link degree between two web sites is 

the frequency which two web sites are linked by a third web site. It is a measure which 

points to a possible substantial relationship between the two co-linked websites. A 

asymmetrical matrix of links between university websites was built with the search 

engine data. Then it was converted to a symmetrical matrix applying the Salton’s cosine 

measure (SALTON, WONG & YANG, 1975; SALTON, 1971). Next, distance 

coordinates were calculated from this symmetrical matrix through applying   

Multidimensional Scaling techniques (MDS) to locate the university web sites with 

regard of their co-link degree on a two-dimensional plane. Finally, the coordinates of 

universities according to the MDS of their co-link structure were plotted together with 

the network graph. 

Several social network measures were used to analyze the resulting graphs. 

Since the web is a graph of links that connect several web sites, the SNA techniques 
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allow us to analyzed the structural and topological features of the European academic 

web network. Along this study we will explain the utility and the calculation of the 

indexes used.  

A more complete picture with additional information is available at the 

http://internetlab.cindoc.csic.es/cv/11/EU_Web_maps/EU_Web_maps.htm

 

Results 

 

Figure 1. European Universities Network of links (504 nodes; 8028 ties) 

Figure 1 shows the network graph of the 527 EU universities with an average 

distance among each other reachable of 1.52 nodes and a diameter of 3, hence this web 

graph is a dense and compact network. In Figure 1 the different countries are presented 

by grey scale. Because of the density of the network we would like to point the reader 

additionally to the colored version of the graph on the web. As can be seen from the 
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legend, in the different countries the university websites have been also classified into 

five categories according to their content. These five categories were created ad hoc to 

express the main academic subject area. Thus, Technology includes all technological 

schools and universities (fachhochschulen, universities of applied sciences, etc.), the 

Social Sciences group includes mainly Business Schools, Biomedicine set up the 

veterinarian and medical universities and the Humanities contains arts schools, human 

sciences universities and library schools. The rest of universities without a specific 

oriented activity were grouped under the General set. We will discuss the influence of 

the content of the website to its classification scheme at a later point in the paper. From 

a topological point of view, the graph shows the properties of a scale-free network 

(ALBERT et al., 1999), which means a few nodes attract a huge amount of links and the 

rest of nodes attract only a few of them. 

University Domain nInDegree 
University of Leeds leeds.ac.uk 0.839 
University of Cambridge cam.ac.uk 0.808 
University of Oxford ox.ac.uk 0.628 
Free University of Berlin fu-berlin.de 0.575 
University of Helsinki helsinki.fi 0.495 
University of Edinburgh ed.ac.uk 0.479 
University of Regensburg uni-regensburg.de 0.471 
University of Karlsruhe uni-karlsruhe.de 0.466 
University of Southampton soton.ac.uk 0.441 
University College London ucl.ac.uk 0.416 

Table 1. Ten universities with highest nInDegree 

Table 1 shows that universities with a high nInDegree. This index measures the 

normalized degree of in-coming links. Thus nInDegree is the percentage of in-coming 

links to a node compared with all in-coming links over the whole nodes in the network. 

This indicator allows to detect the universities that attract a great proportion of links. 

The most outstanding universities are the University of Leeds (0.839), the University of 

Cambridge (0.808) and the University of Oxford (0.628), where the first three are 

British universities and between the first ten there are six ones. This allows us to state 
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that the British network receive more links than other countries, perhaps, due to 

linguistic reasons (THELWALL, TANG & PRICE, 2003). Another possible 

explanation is the relative large size of the British network which therefore offers a 

large number of target pages for link (KATZ & COTHEY, 2006). 

University Domain nOutDegree 
Humboldt University of Berlin hu-berlin.de 0.895 
University of Helsinki helsinki.fi 0.638 
University of Edinburgh ed.ac.uk 0.560 
Linköping University liu.se 0.538 
Technical University of Berlin tu-berlin.de 0.533 
Rhine-Westphalia Technical University of Aachen rwth-aachen.de 0.502 
Free University of Berlin fu-berlin.de 0.457 
Jussieu Campus jussieu.fr 0.452 
University of Alicante ua.es 0.450 
Royal Institute of Technology kth.se 0.440 

Table 2. Ten Universities with highest nOutDegree 

Table 2 shows the universities with a high nOutDegree. Like the index before, 

this one measures the normalized degree of out-coming links. The nOutDegree is the 

percentage of out-coming links from a node over compared with all out-links over the 

whole network. The most highlighted universities are the Humboldt University of 

Berlin (0.895), the University of Helsinki (0.638) and the University of Edinburgh 

(0.56). In this table the presence of German universities is higher than other countries, 

being four in the first ten ranks. Thus the German network is characterized by high 

proportion of out-going links, although many of these go to other German university 

web sites.  

One can also see that the universities are grouped by country. In particular, we 

can distinguish the German sub-network, the British and the French one. Surprisingly, 

France shows a barely connected network and with low volume of published pages. 

This might be caused by the existence of a lot of small size academic institutions 

(écoles) which it have not much presence in the web. Additionally, it is visible that there 

are small countries which universities do not form an homogeneous sub-network but are 
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spread out over other large sub-networks such as in the case of Austria where Austrian 

universities are connected with universities in Germany or in the case of Ireland where 

Irish universities connect to British universities. It important to note that the 

Scandinavian countries constitute a compact and close sub-network. This Scandinavian 

network has also been detected in scientometric environments (BONITZ & 

SCHARNHORST, 2000; GLÄNZEL, 2001; WAGNER & LEYDESDORFF, 2005b). 

Cluster Nodes InnerLinks OuterLinks p_in p_out 
Portugal 11 37 57 0.672727 0.010200 
Germany, Austria 117 1704 812 0.251105 0.017264 
UK, Ireland, Netherlands, Belgium 136 1001 1071 0.109041 0.020561 
Greece 11 29 31 0.527273 0.005548 
Italy 47 240 201 0.222017 0.009061 
Spain 51 432 166 0.338824 0.006955 
Sweden, Denmark, Finland 63 381 493 0.195084 0.017161 
France 81 265 274 0.081790 0.007723 

Table 3. p-cliques of the EU Universities network 

Table 3 shows the p-cliques found in the European network of Universities web 

sites. A p-clique is a sub-graph with a high connectivity which the nodes have whole the 

possible links among them. This technique allows us to cluster nodes according to the 

connectivity degree. One can see the Scandinavian cluster set up by Sweden, Denmark 

and Finland. The largest cluster is shaped by UK, Ireland, Netherlands and Belgium. A 

possible explanation might be the use of English as dominant language (THELWALL, 

TANG & PRICE, 2003) but also collaboration structures (WAGNER & 

LEYDESDORFF, 2005a) and similar disciplinary profiles might be a possible 

explanation (BONITZ et al, 1993). Similar is the case of Germany and Austria due to in 

this case the use of the German language. This analysis confirms the visual appreciation 

which the EU academic network is made up of the aggregation of several regional and 

national networks.  

However, if the EU university network comprises national networks what is the 

main core of the network, the base on which the network rests? Through using the 
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concept of the k-cores (SEIDMAN, 1983) we want to answer this question. A k-core is 

a maximal subnetwork in which each vertex has at least degree k within subnetwork 

(NOOY, MRVAR & BATAGELJ, 2005). The highest core found in our data is a 38-

core which is composed by solely 50 German universities and one Austrian, so we can 

conclude that the vertex of the EU university network is rested on the German network.    

Further, Figure 1 is based on the Kamada-Kawai algorithm which locates in the 

center of the map the nodes which are highest linked. The nodes of big size are also the 

nodes with highest centrality degree. In other words, the nodes centrally located attract 

more links than the rest ones. It has been shown earlier that a correlation exist between 

the number of pages on a web site and the in-links it attracts from other web sites 

(ADAMIC, 2002; THELWALL, 2004; KATZ & COTHEY, 2006). Thus, the size of a 

web site is key factor to achieve a high centrality degree in the web network. 

Because the EU university network is made up of the combination of national 

sub-networks, which we have identified by the p-cliques analysis, it is of interest to 

discover which university web sites act as hub or gatekeeper between the national 

networks and the European one. The Betweenness index measures the intermediation 

degree of a node to keep the network connected, that is to say, the capacity of one node 

to connect only those nodes that are not directly connected to each other. Thus, the 

Betweenness will allows to show the main hubs or gates that connect one network with 

other. The normalized Betweenness is the betweenness value of a node averaged over 

the whole nodes in the network. 

Country University Domain Betweenness  nBetweenness 

UK University of Edinburgh ed.ac.uk 1,645,818 0.594
FI University of Helsinki helsinki.fi 1,313,489 0.474
AT University of Vienna univie.ac.at 1,295,428 0.467
NL University of Amsterdam uva.nl 1,231,140 0.444
SE Linköping University liu.se 1,126,263 0.406
BE Catholic University of Leuven kuleuven.ac.be 1,124,354 0.406
DE Free University of Berlin fu-berlin.de 1,093,416 0.394
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IT University of Bologna unibo.it 962,142 0.347
ES University of Barcelona ub.es 739,074 0.267
GR Aristotle University of Thessaloniki auth.gr 644,534 0.233
IE University of Dublin, Trinity College tcd.ie 627,630 0.226
FR Jussieu Campus jussieu.fr 602,567 0.217
DK University of Copenhagen ku.dk 591,611 0.213
PT University of Coimbra uc.pt 540,819 0.195

Table 4. Betweenness scores of the main universities of each country 

Table 4 shows the highest Betweenness scores of only the top universities and 

normalized Betweenness scores of the main universities for each country, although there 

are countries with have two or three high scoring universities in Betweenness. For 

instance, in the UK the University of Edinburgh is followed by the University of 

Cambridge (0.554) and University of Oxford (0.536). Almost all the universities in 

Table 4 are know as outstanding academic institutions in its countries and as we see 

now they also act as key nodes for the academic web of its countries. An exception is 

the Linköping University in Sweden which has a better web presence in its country than 

prestigious universities such as University of Uppsala (0.278) or University of 

Stockholm (0.224). The low position of the Jussieu Campus on the ranking list in Table 

4 is related to the relative extent of disconnection of the French network with the rest of 

the European networks (AGUILLO, ORTEGA & GRANADINO, 2006). The low link 

degree observed in the French network affect its international visibility, causing a low 

betweenness degree of the French universities. 
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Figure 2. European Universities Co-link map (φ = 0,086) 

Figure 2 show the map of the EU universities according to the co-linkage degree 

among its web sites. The obtained stress in the MDS  (φ = 0,086) is quite low therefore 

the resulting model is acceptable for the analysis. Just like the Figure 1 the map shows 

defined and compact national clusters such as Germany, UK and Spain. One also can 

see how the small countries are connected with large countries such as Netherlands and 

Ireland with respect to the UK. However, one can see particular characteristics. Spain is 

located far away from the rest of the national clusters due to a low co-link degree of the 

Spanish universities with regard to the other country’s universities and a high co-link 

degree between themselves. This is similar to Austria but to a lesser extent. On the 

contrary, the French network has less density because its universities have low a co-link 

degree. In general, the low link degree and the small size of the academic institutions in 

France causes a weakly connected network among the French institutions which is 

spread out widely in the whole network of European universities. 
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Most universities are multidisciplinary therefore the thematic relationships 

according to the university’s subject matter are not distinctive. However it is noticed 

that the technological universities tend to be related at the national level such as within 

Spain and Finland whereas less technological and more social science based universities 

such as the business schools tend to have more international connections.  

National Visibility 
Country University Domain Inlinks Outlinks
DE Free University of Berlin fu-berlin.de 27,249 19,743
FR University of Paris-Sorbonne, Paris IV paris4.sorbonne.fr 25,300 24,413
UK University of Cambridge cam.ac.uk 23,391 16,823
SE Royal Institute of Technology kth.se 15,999 17,923
FI University of Helsinki helsinki.fi 14,798 17,443
AT Innsbruck Medical University uibk.ac.at 11,372 2,161
ES Complutense University of Madrid ucm.es 9,781 9,061
NL Free University of Amsterdam vu.nl 9,482 9,805
IT University of Bologna unibo.it 8,532 5,792
DK Royal School of Library and Information Science db.dk 7,058 7,168
GR University of Macedonia uom.gr 6,970 5,819
BE University of Liège ulg.ac.be 4,616 1,927
PT Technical University of Lisboa utl.pt 3,352 2,655
IE Dublin City University dcu.ie 2,252 1,900

Table 5. National visibility of the main universities by country (total number of national in- and out-

links). 

International Visibility 
Country University Domain Inlinks Outlinks 
UK University of Leeds leeds.ac.uk 30,512 3,515
AT University of Vienna univie.ac.at 14,015 14,060
NL Utrecht University uu.nl 11,688 15,007
DK Technical University of Denmark dtu.dk 11,172 4,700
FI University of Helsinki helsinki.fi 10,847 15,513
DE University of Cologne uni-koeln.de 9,426 5,312
SE Uppsala University uu.se 8,452 11,443
BE Catholic University of Leuven kuleuven.ac.be 8,339 10,876
IT University of Bologna unibo.it 8,339 9,358
GR National Technical University of Athens ntua.gr 6,240 3,594
FR Jussieu Campus jussieu.fr 5,759 6,341
IE University of Dublin, Trinity College tcd.ie 5,410 4,477
ES Polytechnic University of Madrid upm.es 4,076 5,807
PT University of Coimbra uc.pt 3,315 4,105
Table 6. International visibility of the main universities by country (total number of international in- and 

out-links). 
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Tables 5 and 6 show the visibility of each university according to the out- and 

in-links from or to the national universities or international ones. The tables show 

differences between the national and the international visibility. For instance the British 

university with the highest number of links inside UK is the University of Cambridge. 

But, the university with the highest number of links from abroad is the University of 

Leeds. However there are universities that have great visibility both inside and outside 

their country such as the University of Helsinki in Finland or the Catholic University of 

Leuven in Belgium. It is significant to notice the national and international visibility 

differ between the countries. The German, French and Spanish universities have high 

national visibility even though their international visibility is quite low.  

 

Discussion and Conclusions 

The general picture of the European academic network sector allows us to see 

that it is built up of multiple national networks. That is, there is not a single unique 

network but a network of national networks that are aggregated one with another. In this 

aggregation process the first component is the German network, followed by the 

addition of other national networks to build the complete EU network. But one has to 

have in mind that the web graph is a directed network. So the base position of Germany 

is not because it is a very linked country but because it is the country with  most 

outlinks abroad. Thus, Germany, which universities have the highest outdegree, builds 

the EU network by means of outlinks that connect other European universities and then 

other national networks. At the same time British universities are the most linked. They 

also build the EU network by means of attracting links from other countries due to the 

amount of contents published in English. This can probably be explained due to amount 

of contents publish in English language. THELWALL, TANG & PRICE (2003) 
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already showed the importance of the linguistic pattern to achieve links from outer 

countries in the European university web space. This dual role of UK and Germany 

explains the high cohesion that results from the small network diameter and distance 

between nodes. This allows us to argue that the EHEA is quite united in the web space, 

although these results need to be compared with other regions and the relationship of 

these regions with the European countries such as Spain with South America or UK 

with the Commonwealth countries. 

One can also conclude that the EU university network is made up by the 

aggregation of national networks. Thus a university is first linked to others within its 

country and then this national network is connected to other national networks. 

However, there are “pan-European” universities, detected through the Betweenness 

index, that link and are linked mainly to universities abroad. These universities are the 

hubs or gateways that connect a national network to the whole European network.     

The SNA techniques and measures make it possible to show the characteristics 

of the web presence of the EU academic network. The centrality degree measures have 

indicated those universities are more outstanding regarding to the links that they attract 

and make; we used k-cores to detect where the set of most interconnected web sites is 

and finally applied p-cliques and discovered that the EU university network is made up 

of national networks. In particular the Betweenness index has been used to detected the 

intermediate universities between the national networks and the EU network. So one 

can to conclude that SNA techniques are a suitable tools to analyse the topology of the 

web and its relationships. 

The co-link map showed a different kind of relationship: the co-occurrence of 

incoming links. This allows to show the particular relationship between countries and 

universities. This shows that although the European academic network is highly 
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connected there is particular countries with an open networks connected with other 

networks such as Netherlands, Belgium and the Scandinavian countries, and other 

countries such as Spain or Austria that are few co-linked internationally or France 

which network is barely united. Nevertheless, we have been not able to detect subject 

relationship because almost all the universities are multidisciplinary although some 

technical and social sciences universities have showed certain subject co-link behavior. 

For future research it would be interesting to look into some additional data in 

particular to understand the role of certain universities. As has been debated in the 

literature the meaning of hyperlinks can be very different reaching from administrative 

to content related reasons (THELWALL, 2006). Therefore, we avoid to discuss our 

results in terms of importance or collaboration or any other content based interpretation. 

However, further analysis we have done with the data set elsewhere (ORTEGA, 2007) 

show that there are high correlations between web data based on hyperlinks and other 

socio-economic or bibliometric data. That might be an indication that web graph based 

on units of analysis of a high level of aggregation as universities or countries are quite 

suitable as indicators for structures in the academic European system. At least, as our 

analysis show, for Europe we observe signs for cohesion and integration on the 

background of still dominant national science systems and an interesting interplay 

between “big players” in the field and small countries. Therefore, it seems reasonable to 

repeat such kind of exercise longitudinal to make trends visible.   
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